CODE - A

Batch - 2007 [Engg]

Time : 3 Hours

Maximum Marks : 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General:

- 1. This booklet is your Question Paper containing 90 questions.
- 2. The Question Paper **CODE** is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
- 3. Fill the bubbles completely and properly using a **Blue/Black Ball Point Pen** only.
- 4. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
- 5. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
- 6. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
- 7. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.
- B. Question paper format & Marking Scheme :
- 8. The question paper consists of **3 parts** (Physics, Chemistry and Maths).
- 9. The test is of **3 hours** duration. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Name of the Candidate (in Capitals)

Test Centre _____

Centre Code _____

Candidate's Signature _____

Invigilator's Signature _____

PHYSICS

- 1. The electric potential V at any point (x, y, z) (all in metre) in space is given by $V = 4 x^2$ volt. The electric field at the point (1, 0, 2) in V/m is
 - (a) 16 along +x-axis (b) 8 along neg. x-axis (c) 8 along +x-axis (d) 16 along neg. x-axis
- 2. Four point charges -Q, -q, 2q and 2Q are placed one at each corner of a square. The relation between Q and q for which potential at the centre of square is zero is

(a)
$$Q = -q$$
 (b) $Q = -\frac{1}{q}$ (c) $Q = q$ (d) $Q = \frac{1}{q}$

- 3. In a region, the potential is represented by V(x, y, z) = 6x 8xy 8y + 6yz, where V is in volt and x, y, z are in meter. The electric force experienced by a charge of 2 C situated at point (1, 1, 1) is
 - (a) $4\sqrt{35}$ N (b) $6\sqrt{5}$ N (c) 30 N (d) 24 N
- 4. Charges +q and -q are placed at points A and B respectively, which are at a distance 2 L apart. C is mid point of A and B. Work done in moving a charge +Q along the semicircle CRD, figure, is
 - (a) $\frac{qQ}{2\pi \in_0 L}$ (b) $\frac{qQ}{6\pi \in_0 L}$ (c) $-\frac{qQ}{6\pi \in_0 L}$ (d) $\frac{qQ}{4\pi \in_0 L}$ (e) $\frac{qQ}{4\pi \in_0 L}$
- 5. Two identical charged spheres suspended from a common point by two massless strings of length l, are initially at a distance x ($x \le l$) apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of distance x between the spheres as
 - (a) $v \propto x$ (b) $v \propto x^{-1/2}$ (c) $v \propto x^{-1}$ (d) $v \propto x^{1/2}$
- 6. The dimensional formula of electric potential is

NEWTON TUTORIALS

- (a) $[MLT^2 A^{-1}]$ (b) $[ML^2 T^{-2} A^{-1}]$ (c) $[ML^2 T^{-3} A^{-1}]$ (d) $[ML^2 T^{-3} A^{-2}]$
- 7. There is an electric field in x-direction. If work done on moving a charge 0.2 C through a distance of 2 m along a like making an angle of 60° with x-axis is 4.0 J. What is the value of *E*?
 - (a) $\sqrt{3} N/C$ (b) 4 N/C (c) 5 N/C (d) None of these
- 8. Three charges, each +q, are placed at the corners of an isosceles triangle *ABC* of sides *BC* and *AC* = 2 *a*. *D* and *E* are the mid points of *BC* and *CA*. The work done in taking a charge *Q* from *D* to *E* is

9. There are four point charges +q, -q, +q and -q placed at the corners A, B, C and D respectively of a square of side a. The potential energy of the system is $\frac{1}{4\pi\varepsilon_0}$ times.

- 10. Two charges q_1 and q_2 are placed 30 cm apart, as shown in figure. A third charge q_3 is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is
 - $\frac{q_3}{4\pi \in_0} k$, where k is (a) 8 q_2 (b) 6 q_2 (c) 8 q_1

(d) 6
$$q_1$$

- 11. Three point charges of 1*C*, 2 *C* and 3 *C* are placed at corners of an equilateral triangle of side 1 m. Work required to move these charges to the corners of a smaller equilateral triangle of side 0.5 will be
 - (a) 9.9×10^{10} J
 - (b) $9.9 \times 10^9 \text{ J}$
 - (c) 9.9×10^8 J

(d)
$$9.9 \times 10^{11}$$
 J

- 12. A train is moving with a velocity of 30 km h^{-1} due east and a car is moving with a velocity of 40 km h^{-1} . What is the speed and direction of the car as appears to a passenger in the train ?
 - (a) 50 km h^{-1} , tan^{-1} (3/4) West of North
 - (c) 30 km h^{-1} , tan⁻¹ (3/4) East of North
- (b) 40 km h⁻¹, tan⁻¹ (4/3) West of North
- of North (d) 50 km h^{-1} , tan⁻¹ (3/4) East of North
- 13. Two bullets are fired horizontally from the same height with different velocities. Which bullet will reach the ground first?
 - (a) faster one
 - (c) both simultaneously
- 14. A fighter plane flying horizontally at an altitude of 1.5 km with speed of 720 km h⁻¹ passes directly overhead an anticraft gun. At what angle from the vertical should the shell be fired from the gun with muzzle speed 400 ms⁻¹ to hit the plane in shortest time?
 - (a) 90° (b) 60° (c) 45° (d) 30°
- 15. A cricketer can throw a ball to a maximum horizontal distance of 100 m. How much high above the ground can the cricketer throw the same ball?
 - (a) 50 m (b) 70 m (c) 100 m (d) 120 m

Reg. Office

(b) slower one

(d) can not be predicted

16. A body is projected with velocity u so that its horizontal range is twice the greatest height attained. The value of range is

(a)
$$\frac{3u^3}{2g}$$
 (b) $\frac{2u^2}{5g}$ (c) $\frac{4u^2}{5g}$ (d) $\frac{5u^2}{3g}$

17. For a projectile, projected with velocity u making an angle θ with the horizontal, its range on a horizontal plane is (3/2) times the maximum height attained. Then its range is :

(g is the acceleration due to gravity)

(a) $\frac{24u^2}{35g}$ (b) $\frac{48u^2}{73g}$ (c) $\frac{44u^2}{65g}$ (d) $\frac{48u^2}{78g}$

18. The point from where a ball is projected is taken as the origin of the co-ordinate axes. The x and y components of its displacement are given by x = 6t and $y = 8t - 5t^2$. What is the velocity of projection?

(a)
$$6 \text{ ms}^{-1}$$
 (b) 8 ms^{-1} (c) 10 ms^{-1} (d) 14 ms^{-1}

- 19. A ball is thrown upwards at an angle of 60° to the horizontal. It falls on the ground at a distance of 90 m. If the ball is thrown with the same initial velocity at an angle of 30°, it will fall on the ground at a distance of :
 - (a) 120 m (b) 90 m (c) 60 m (d) 30 m
- 20. A stone is thrown at an angle θ to the horizontal with speed *u*. It reaches a maximum height *H*. The time of flight of this stone is :

(a)
$$\sqrt{\frac{H}{g}}$$
 (b) $\sqrt{\frac{2H}{g}}$ (c) $2\sqrt{\frac{2H}{g}}$ (d) $2\sqrt{\frac{2H\sin\theta}{g}}$

- 21. A projectile is projected with kinetic energy K. Its range is 60 m. It will have minimum KE, after covering a horizontal distance equal to
 - (a) 60 mm (b) 30 m (c) 45 m (d) 15 m
- 22. A particle is thrown with velocity u making an angle θ with the vertical. It just crosses the top of two poles each of height h after 1 s and 3 s respectively. The maximum height of projectile is

- (b) 19.6 m
- (c) 39.2 m
- (d) 4.9 m

23. A particle is projected from a horizontal plane with a velocity of $8\sqrt{2}$ ms⁻¹ at an angle. At highest point its velocity is found to be 8 ms⁻¹. Its range will be (g = 10 ms⁻²)

- (a) 3.2 m (b) 4.6 m (c) 6.4 m (d) 12.8 m
- 24. A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of 147 ms⁻¹. Then the time after which its inclination with the horizontal is 45°, is

(a) 15 s (b) 10.98 s (c) 5.49 s (d) 2.745 s

Reg. Office

25. If H and R are the maximum height attained by a projectile and the horizontal range respectively, then the angle of projection at the origin is

(a)
$$\tan^{-1}\left(\frac{2H}{R}\right)$$
 (b) $\tan^{-1}\left(\frac{4H}{R}\right)$ (c) $\tan^{-1}\left(\frac{H}{R}\right)$ (d) $\tan^{-1}\left(\frac{3H}{2R}\right)$

- 26. A projectile can have the same range '*R*' for two angles of projection. If ' t_1 ' and ' t_2 ' be the limes of flights in the two cases, then the product of the two time of flights is proportional to
 - (a) R (b) $\frac{1}{R}$ (c) $\frac{1}{R^2}$ (d) R^2
- 27. If a particle is thrown vertically upwards then its velocity so that it covers same distance in 5th and 6th seconds would be

28. A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the ground with a velocity 3 u. The height of the tower is

(a)
$$\frac{3u^2}{g}$$
 (b) $\frac{4u^2}{g}$ (c) $\frac{6u^2}{g}$ (d) $\frac{9u^2}{g}$

29. A balloon is rising vertically up with a velocity of 29 ms⁻¹. A stone is dropped from it and it reaches ground in 10 seconds. The height of the balloon when the stone was dropped from it is

$$(g = 9.8 \text{ ms}^{-2}).$$

- (a) 400 m (b) 150 m (c) 100 m (d) 200 m
- 30. A particle is released from rest from a tower of height 3 h. The ratio of the intervals of time to cover three equal heights h is
 - (a) $t_1: t_2: t_3 = 3:2:1$ (b) $t_1: t_2: t_3 = 1:(\sqrt{2}-1):(\sqrt{3}-2)$ (c) $t_1: t_2: t_3 = 1:\sqrt{2}:\sqrt{3}$ (d) $t_1: t_2: t_3 = 1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})$

Reg. Office

(d) None of these

38. The correct stability order for the following species is

45.	Which of the following does not contain coordinate bond?					
	(a) BH_{4}^{-}	(b) NH ⁺ ₄	(c) CO_3^{2-}	(d) $H_{3}O^{+}$		
46.	The correct order in which the O–O bond length increases in the following is					
	(a) $O_2 < O_3 < H_2O_2$	(b) $H_2O_2 < O_3 < O_2$	(c) $O_3 < O_2 < H_2O_2$	(d) $O_2 < H_2O_2 < O_3$		
47.	Which species has the maximum number of lone pair of electrons on the central atom?					
	(a) ClO_3^-	(b) XeF ₄	(c) SF ₄	(d) I_3^-		
48.	Molecular orbital electro	nic configuration for X_2^{n-1}	anion is			
	$\mathrm{KK}^*(\sigma 2\mathrm{s})^2(\overset{*}{\sigma} 2\mathrm{s})^2(\pi 2\mathrm{p}_x)$	$(\pi^{2}p_{y})^{2}(\sigma^{2}p_{z})^{2}(\pi^{*}2p_{z})^{2}(\pi^{*}$	1			
	The anion X_2^{n-} is					
	(a) N_2^-	(b) O ₂	(c) N_2^{2-}	(d) $O_2^{2^-}$		
49.	Among the following co is	mpounds, the one that is p	olar and has the central ato	om with <i>sp</i> ² hybridization		
	(a) H ₂ CO ₃	(b) SiF ₄	(c) BF ₃	(d) HClO ₂		
50.	Which among the follow	ing species is most stable?				
	(a) He ₂	(b) He_2^+	(c) He_2^{2+}	(d) H ₂		
51.	Number of moles KMnO	4 that is needed to react with	th one mole of FeC ₂ O ₄ in a	cidic medium is		
	(a) 2/5	(b) 3/5	(c) 4/5	(d) 1		
52.	3 mol of a mixture of $FeSO_4$ and $Fe_2(SO_4)_3$ required Hence the mole fraction of $FeSO_4$ in the mixture is					
	(a) 1/3	(b) 2/3	(c) 2/5	(d) 3/5		
53.	How many ml of aqueous solution of KMnO ₄ containing 158 g litre ^{-1} must be used for complet conversion of 83 g of KI to I ₂ in the presence of H ₂ SO ₄ ?					
	(a) 90.36 ml	(b) 100 ml	(c) 85.09 ml	(d) 65.05 ml		
54.	The anion nitrate can be reaction would be	e converted into ammoniu	m ion. The equivalent we	eight of NO_3^- ion in this		
	(a) 6.20	(b) 7.75	(c) 10.5	(d) 21.0		
55.	For the reaction,					
	$M^{x+} + MnO_4^- \longrightarrow MO_3^- + Mn^{+2} + \frac{1}{2}O_2$ if one mole of MnO_4^- oxidizes 1.67 moles of M^{+x} to MO_3^- ,					
	then the value of x in the metal ion is					
	(a) 5	(b) 3	(c) 2	(d) 1		
56.	A 6.90 M solution of KOH in water has 30% of KOH by weight. The density of solution is					
	(a) 3.88 g/ml	(b) 13.88 g/ml	(c) 1.4 g/ml	(d) 1.288 g/ml		

- 57. 28 g N_2 and 6 g H_2 were mixed. At equilibrium 17 g NH_3 was formed. The weight of N_2 and H_2 at equilibrium are respectively.
 - (a) 11 g, 0 g (b) 1 g, 3 g (c) 11 g, 3 g (d) 14 g, 3 g
- 58. 8.7 gm of pure MnO₂ is heated with an excess of HCl and the gas evolved is passed into a solution of KI. The amount of I₂ liberated is
 - (a) 0.2 mole (b) 25.4 gm (c) 15.4 gm (d) 7.7 gm
- 59. A one litre solution of 0.1 M of a metal chloride MCl_x requires 500 mL of 0.6 M AgNO₃ solution for complete precipitation. The value of x is
 - (a) 1 (b) 2 (c) 4 (d) 3
- 60. Hydrochloric acid solutions A and B have concentrations 0.5 N and 0.1 N respectively. The volumes of solution A and solution B required to make a 2 litre solution of 0.2 N HCl are
 - (a) 0.5 L of A and 1.5 L of B

(b) 1.5 L of A and 0.5 L of B

(c) 1.0 L of A and 1.0 L of B

(d) 0.75 L of A and 1.25 L of B

61. If $f(x) = 4x^3 + 3x^2 + 3x + 4$, then $x^3 f\left(\frac{1}{x}\right)$ is (c) $\left| f\left(\frac{1}{r}\right) \right|^2$ (b) $\frac{1}{f(x)}$ (a) f(-x)(d) f(x)62. The domain of $f(x) = \sqrt{\log \frac{1}{|\sin x|}}$ is (a) $R - \{2n\pi, n \in I\}$ (b) $R - \{n\pi, n \in I\}$ (c) $R - \{-\pi, \pi\}$ (d) $(-\infty, \infty)$ The domain of $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{x^2+2x+8}}$ is 63. (c) (2, 4)(a) (1, 4)(b) (-2, 4)(d) $[2, \infty)$ 64. Let $f:(-1,1) \to IR$ be such that $f(\cos 4\theta) = \frac{2}{2-\sec^2 \theta}$ for $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, then the value(s) of $f\left(\frac{1}{3}\right)$ is (are) (a) $2 + \sqrt{\frac{3}{2}}$ (b) $1 + \sqrt{\frac{3}{2}}$ (c) $1 - \sqrt{\frac{2}{2}}$ (d) $1 + \sqrt{\frac{2}{2}}$ 65. The range of $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$, $x \in R$ is (b) $\left(1, \frac{11}{7}\right)$ (c) $\left(1, \frac{7}{3}\right)$ (d) $\left(1, \frac{7}{5}\right)$ (a) $(1, \infty)$ The range of $f(x) = 4^x + 2^x + 1$ is 66. (c) $(2, \infty)$ (d) $(3, \infty)$ (b) $(1, \infty)$ (a) $(0, \infty)$ 67. If $f(x) = \frac{x}{\sqrt{1+x^2}}$, then (fofof)(x) is equal to (c) $\frac{3x}{1-x^2}$ (a) $\frac{3x}{\sqrt{1+x^2}}$ (b) $\frac{x}{\sqrt{1+3r^2}}$ (d) None of these The range of function $f(x) = x^2 + \frac{1}{x^2 + 1}$ is 68. (c) $\left|\frac{3}{2},\infty\right|$ (b) [2, ∞) (a) $[1, \infty)$ (d) None of these The domain of $f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$ is 69. (a) $(-\infty, -2) \cup [4, \infty)$ (b) $(-\infty, -2] \cup [4, \infty)$ (c) $(-\infty, -2) \cup (4, \infty)$ (d) None of these **Reg. Office** 505, 5TH FLOOR, HARIOM TOWER, CIRCULAR ROAD, RANCHI-1 (JHARKHAND) | @: 0651-2563018, 9204793521

Α

MATHS

70.	Let the function $f: R \to R$ be defined by $f(x) = 2x + \sin x$. Then, f is						
	(a) one-one and onto	(b) one-one and into	(c) many-one and onto	(d) many-one and into			
71.	The function $f:(-\infty, -1] \rightarrow (0, e^5]$ defined by $f(x) = e^{x^3 - 3x + 2}$ is						
	(a) one-one and onto	(b) one-one and into	(c) many one and into	(d) many one and onto			
72.	If $f: R \to R$ satisfies $f(x+y) = f(x) + f(y)$, for all $x, y \in R$ and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is						
	(a) $\frac{7n}{2}$	(b) $\frac{7(n+1)}{2}$	(c) $7n(n+1)$	(d) $\frac{7n(n+1)}{2}$			
73.	If $y = f(x)$ satisfy the condition $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}(x \neq 0)$, then $f(x)$ is						
	(a) $-x^2+2$	(b) $-x^2 - 2$	(c) $x^2 - 2, x \in R - \{0\}$	(d) $x^2 - 2$, $ x \in [2, \infty)$			
74.	The domain of $f(x) = x$	$\sqrt{x-x^2} + \sqrt{4+x} + \sqrt{4-x}$	is				
	(a) [−4, ∞)	(b) [-4, 4]	(c) [0, 4]	(d) [0, 1]			
75.	The range of $f(x) = \log_e \sqrt{4 - x^2}$ is						
	(a) $(0, \infty)$	(b) (-∞, ∞)	(c) $\left(-\infty, \log_e 2\right]$	(d) $\left(\log_e 2, \infty\right)$			
76.	Let $f(x) = \frac{x^2 - 4}{x^2 + 4}$ for $ x > 2$, then the function $f: (-\infty, -2] \cup [2, \infty) \to (-1, 1)$ is						
	(a) one-one into	(b) one-on <mark>e onto</mark>	(c <mark>) many-o</mark> ne into	(d) many-one onto			
77.	If $x = 1111$ (20 digits)	y = 3333 (10 digits) a	nd $z = 2222$ (10 digits),	then $\frac{x-y^2}{z}$ equals			
	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 4			
78.	If a, b, c are non-zero real numbers, then the minimum value of the expression						
	$\frac{(a^8 + 4a^4 + 1)(b^4 + 3b^2 + 1)(c^2 + 2c + 2)}{a^4b^2}$ equals						
	(a) 12	(b) 24	(c) 30	(d) 60			
79.	If the sum of <i>m</i> consecutive odd integers is m^4 , then the first integer is						
	(a) $m^3 + m + 1$	(b) $m^3 + m - 1$	(c) $m^3 - m - 1$	(d) $m^3 - m + 1$			
80.	If 2λ , λ and $\left[\lambda^2 - 14\right]$ terms of a GP in order, t], $\lambda \in R - \{0\}$ and [·] denotes the solution of the second seco	notes the greatest integer equence, 1, 3λ , 6λ , 10λ ,	function are the first three is			
	(a) 5104	(b) 5304	(c) 5504	(d) 5704			

A

81.	Let $a_1, a_2,, a_{10}$ be in AP and $h_1, h_2,, h_{10}$ be in HP. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then a_4h_7 is					
	(a) 2	(b) 3	(c) 5	(d) 6		
82.	If $a(b-c)x^2 + b(c-a)xy + c(a-b)y^2$ is a perfect square, the quantities a, b, c are in					
	(a) AP	(b) GP	(c) HP	(d) None of these		
83.	If 11 AM's are inserted between 28 and 10, the number of integral AM's is					
	(a) 5	(b) 6	(c) 7	(d) 8		
84.	The minimum value of the quantity $\frac{(a^2+3a+1)(b^2+3b+1)(c^2+3c+1)}{abc}$, where $a, b, c \in \mathbb{R}^+$, is					
	(a) $\frac{11^3}{2^3}$	(b) 125	(c) 25	(d) 27		
85.	If a, b, c are in AP and $ $	a , b , c < 1 and				
		$x = 1 + a + a^2 + \ldots + \infty$				
		$y = 1 + b + b^2 + \ldots + \infty$				
		$z = 1 + c + c^2 + \ldots + \infty$				
	Then, x, y, z will be in					
	(a) AP	(b) GP	(c) HP	(d) None of these		
86.	Let $a_1, a_2, a_3,$ be terms are in AP, if $\frac{a_1 + a_2 + + a_p}{a_1 + a_2 + + a_q} = \frac{p^2}{q^2}$, $p \neq q$, then $\frac{a_6}{a_{21}}$ equals					
	(a) $\frac{41}{11}$	(b) $\frac{7}{2}$	(c) $\frac{2}{7}$	(d) $\frac{11}{41}$		
87.	If 100 times the 100th t term, then the 150th term	erm of an <mark>AP with</mark> non- of this AP is	zero common difference o	equals the 50 times its 50th		
	(a) 150 times its 50th ter	m	(b) 150			
	(c) zero		(d) -150			
88.	For any three positive rea	al numbers a, b and $c, 9$	$(25a^2 + b^2) + 25(c^2 - 3ac)$	=15b(3a+c). Then		
	(a) <i>a</i> , <i>b</i> and <i>c</i> are in GP		(b) b, c and a are in GP			
	(c) b, c and a are in AP		(d) a, b and c are in AP			
89.	$\sum_{r=1}^{10} \frac{r}{1 - 3r^2 + r^4} =$					
	(a) $-\frac{50}{109}$	(b) $-\frac{54}{109}$	(c) $-\frac{55}{111}$	(d) $-\frac{55}{109}$		
90.	The sum of the series 1+	$\frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ to infin	nite terms, is :			
	(a) $\frac{31}{12}$	(b) $\frac{41}{16}$	(c) $\frac{45}{16}$	(d) $\frac{35}{16}$		

MEWTON A TUTORIALS

ANSWER KEY

PHYSICS									
1	2	3	4	5	6	7	8	9	10
В	Α	Α	С	В	С	D	Α	Α	Α
11	12	13	14	15	16	17	18	19	20
Α	Α	С	D	Α	С	В	С	В	С
21	22	23	24	25	26	27	28	29	30
В	В	D	С	В	Α	С	В	D	D
CHEMISTRY									
31	32	33	34	35	36	37	38	39	40
Α	В	В	В	Α	D	Α	D	В	Α
41	42	43	44	45	46	47	48	49	50
С	Α	С	D	C	Α	D	Α	Α	D
51	52	53	54	55	56	57	58	59	60
В	Α	В	В	С	D	D	В	D	Α
MATHS									
61	62	63	64	65	66	67	68	69	70
D	В	D	В	С	В	В	Α	Α	Α
71	72	73	74	<mark>75</mark>	<mark>76</mark>	77	78	79	80
В	D	D	D	С	С	В	С	D	В
81	82	83	84	<mark>85</mark>	<mark>86</mark>	87	88	89	90
D	С	Α	В	С	D	С	С	D	D