$\square \square \square$

PERIODIC TEST

Batch - 2007 [Engg]

Time : 3 Hours
Maximum Marks : 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.
You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General :

1. This booklet is your Question Paper containing 90 questions.
2. The Question Paper CODE is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
3. Fill the bubbles completely and properly using a Blue/Black Ball Point Pen only.
4. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
5. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
6. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
7. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.
B. Question paper format \& Marking Scheme :
8. The question paper consists of 3 parts (Physics, Chemistry and Maths).
9. The test is of $\mathbf{3}$ hours duration. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

Name of the Candidate (in Capitals) \qquad

Test Centre \qquad Centre Code \qquad

Candidate's Signature \qquad Invigilator's Signature \qquad

PHYSICS

1. The electric potential V at any point (x, y, z) (all in metre) in space is given by $V=4 x^{2}$ volt. The electric field at the point $(1,0,2)$ in V / m is
(a) 16 along $+x$-axis
(b) 8 along neg. x-axis
(c) 8 along $+x$-axis
(d) 16 along neg. x-axis
2. Four point charges $-Q,-q, 2 q$ and $2 Q$ are placed one at each corner of a square. The relation between Q and q for which potential at the centre of square is zero is
(a) $Q=-q$
(b) $Q=-\frac{1}{q}$
(c) $Q=q$
(d) $Q=\frac{1}{q}$
3. In a region, the potential is represented by $V(x, y, z)=6 x-8 x y-8 y+6 y z$, where V is in volt and x, y, z are in meter. The electric force experienced by a charge of 2 C situated at point $(1,1,1)$ is
(a) $4 \sqrt{35} \mathrm{~N}$
(b) $6 \sqrt{5} \mathrm{~N}$
(c) 30 N
(d) 24 N
4. Charges $+q$ and $-q$ are placed at points A and B respectively, which are at a distance $2 L$ apart. C is mid point of A and B. Work done in moving a charge $+Q$ along the semicircle $C R D$, figure, is
(a) $\frac{q Q}{2 \pi \epsilon_{0} L}$
(b) $\frac{q Q}{6 \pi \epsilon_{0} L}$
(c) $-\frac{q Q}{6 \pi \epsilon_{0} L}$
(d) $\frac{q Q}{4 \pi \in_{0} L}$

5. Two identical charged spheres suspended from a common point by two massless strings of length l, are initially at a distance $x(x \ll l)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of distance x between the spheres as
(a) $v \propto x$
(b) $v \propto x^{-1 / 2}$
(c) $v \propto x^{-1}$
(d) $v \propto x^{1 / 2}$
6. The dimensional formula of electric potential is
(a) $\left[M L T^{-2} A^{-1}\right]$
(b) $\left[M L^{2} T^{-2} A^{-1}\right]$
(c) $\left[M L^{2} T^{-3} A^{-1}\right]$
(d) $\left[M L^{2} T^{-3} A^{-2}\right]$
7. There is an electric field in x-direction. If work done on moving a charge 0.2 C through a distance of 2 m along a like making an angle of 60° with x -axis is 4.0 J . What is the value of E ?
(a) $\sqrt{3} N / C$
(b) $4 N / C$
(c) $5 \mathrm{~N} / \mathrm{C}$
(d) None of these
8. Three charges, each $+q$, are placed at the corners of an isosceles triangle $A B C$ of sides $B C$ and $A C=2 a$. D and E are the mid points of $B C$ and $C A$. The work done in taking a charge Q from D to E is
(a) zero
(b) $\frac{3 q Q}{4 \pi \epsilon_{0} a}$
(c) $\frac{3 q Q}{8 \pi \epsilon_{0} a}$
(d) $\frac{q Q}{4 \pi \epsilon_{0} a}$

9. There are four point charges $+q,-q,+q$ and $-q$ placed at the corners A, B, C and D respectively of a square of side a. The potential energy of the system is $\frac{1}{4 \pi \varepsilon_{0}}$ times.
(a) $\frac{q^{2}}{a}(-4+\sqrt{2})$
(b) $\frac{q^{2}}{2 a}(-4+\sqrt{2})$
(c) $\frac{4 q^{2}}{a}$
(d) $\frac{-4 \sqrt{2} q^{2}}{a}$

10. Two charges q_{1} and q_{2} are placed 30 cm apart, as shown in figure. A third charge q_{3} is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is $\frac{q_{3}}{4 \pi \epsilon_{0}} k$, where k is
(a) $8 q_{2}$
(b) $6 q_{2}$
(c) $8 q_{1}$

(d) $6 q_{1}$
11. Three point charges of $1 C, 2 C$ and $3 C$ are placed at corners of an equilateral triangle of side 1 m . Work required to move these charges to the corners of a smaller equilateral triangle of side 0.5 will be
(a) $9.9 \times 10^{10} \mathrm{~J}$
(b) $9.9 \times 10^{9} \mathrm{~J}$
(c) $9.9 \times 10^{8} \mathrm{~J}$
(d) $9.9 \times 10^{11} \mathrm{~J}$

12. A train is moving with a velocity of $30 \mathrm{~km} \mathrm{~h}^{-1}$ due east and a car is moving with a velocity of $40 \mathrm{~km} \mathrm{~h}^{-1}$. What is the speed and direction of the car as appears to a passenger in the train?
(a) $50 \mathrm{~km} \mathrm{~h}^{-1}, \tan ^{-1}(3 / 4)$ West of North
(b) $40 \mathrm{~km} \mathrm{~h}^{-1}, \tan ^{-1}(4 / 3)$ West of North
(c) $30 \mathrm{~km} \mathrm{~h}^{-1}, \tan ^{-1}(3 / 4)$ East of North
(d) $50 \mathrm{~km} \mathrm{~h}^{-1}, \tan ^{-1}(3 / 4)$ East of North
13. Two bullets are fired horizontally from the same height with different velocities. Which bullet will reach the ground first?
(a) faster one
(b) slower one
(c) both simultaneously
(d) can not be predicted
14. A fighter plane flying horizontally at an altitude of 1.5 km with speed of $720 \mathrm{~km} \mathrm{~h}^{-1}$ passes directly overhead an anticraft gun. At what angle from the vertical should the shell be fired from the gun with muzzle speed $400 \mathrm{~ms}^{-1}$ to hit the plane in shortest time?
(a) 90°
(b) 60°
(c) 45°
(d) 30°
15. A cricketer can throw a ball to a maximum horizontal distance of 100 m . How much high above the ground can the cricketer throw the same ball?
(a) 50 m
(b) 70 m
(c) 100 m
(d) 120 m
16. A body is projected with velocity u so that its horizontal range is twice the greatest height attained. The value of range is
(a) $\frac{3 u^{3}}{2 g}$
(b) $\frac{2 u^{2}}{5 g}$
(c) $\frac{4 u^{2}}{5 g}$
(d) $\frac{5 u^{2}}{3 g}$
17. For a projectile, projected with velocity u making an angle θ with the horizontal, its range on a horizontal plane is $(3 / 2)$ times the maximum height attained. Then its range is :
(g is the acceleration due to gravity)
(a) $\frac{24 u^{2}}{35 g}$
(b) $\frac{48 u^{2}}{73 g}$
(c) $\frac{44 u^{2}}{65 g}$
(d) $\frac{48 u^{2}}{78 g}$
18. The point from where a ball is projected is taken as the origin of the co-ordinate axes. The x and y components of its displacement are given by $x=6 t$ and $y=8 t-5 t^{2}$. What is the velocity of projection?
(a) $6 \mathrm{~ms}^{-1}$
(b) $8 \mathrm{~ms}^{-1}$
(c) $10 \mathrm{~ms}^{-1}$
(d) $14 \mathrm{~ms}^{-1}$
19. A ball is thrown upwards at an angle of 60° to the horizontal. It falls on the ground at a distance of 90 m . If the ball is thrown with the same initial velocity at an angle of 30°, it will fall on the ground at a distance of:
(a) 120 m
(b) 90 m
(c) 60 m
(d) 30 m
20. A stone is thrown at an angle θ to the horizontal with speed u. It reaches a maximum height H. The time of flight of this stone is :
(a) $\sqrt{\frac{H}{g}}$
(b) $\sqrt{\frac{2 H}{g}}$
(c) $2 \sqrt{\frac{2 H}{g}}$
(d) $2 \sqrt{\frac{2 H \sin \theta}{g}}$
21. A projectile is projected with kinetic energy K. Its range is 60 m . It will have minimum KE , after covering a horizontal distance equal to
(a) 60 mm
(b) 30 m
(c) 45 m
(d) 15 m
22. A particle is thrown with velocity u making an angle θ with the vertical. It just crosses the top of two poles each of height h after 1 s and 3 s respectively. The maximum height of projectile is
(a) 9.8 m
(b) 19.6 m
(c) 39.2 m
(d) 4.9 m

23. A particle is projected from a horizontal plane with a velocity of $8 \sqrt{2} \mathrm{~ms}^{-1}$ at an angle. At highest point its velocity is found to be $8 \mathrm{~ms}^{-1}$. Its range will be $\left(g=10 \mathrm{~ms}^{-2}\right)$
(a) 3.2 m
(b) 4.6 m
(c) 6.4 m
(d) 12.8 m
24. A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of $147 \mathrm{~ms}^{-1}$. Then the time after which its inclination with the horizontal is 45°, is
(a) 15 s
(b) 10.98 s
(c) 5.49 s
(d) 2.745 s
25. If H and R are the maximum height attained by a projectile and the horizontal range respectively, then the angle of projection at the origin is
(a) $\tan ^{-1}\left(\frac{2 H}{R}\right)$
(b) $\tan ^{-1}\left(\frac{4 H}{R}\right)$
(c) $\tan ^{-1}\left(\frac{H}{R}\right)$
(d) $\tan ^{-1}\left(\frac{3 H}{2 R}\right)$
26. A projectile can have the same range ' R ' for two angles of projection. If ' t_{1} ' and ' t_{2} ' be the limes of flights in the two cases, then the product of the two time of flights is proportional to
(a) R
(b) $\frac{1}{R}$
(c) $\frac{1}{R^{2}}$
(d) R^{2}
27. If a particle is thrown vertically upwards then its velocity so that it covers same distance in 5th and 6th seconds would be
(a) $48 \mathrm{~m} / \mathrm{s}$
(b) $14 \mathrm{~m} / \mathrm{s}$
(c) $49 \mathrm{~m} / \mathrm{s}$
(d) $7 \mathrm{~m} / \mathrm{s}$
28. A stone is thrown vertically upward with an initial velocity u from the top of a tower, reaches the ground with a velocity $3 u$. The height of the tower is
(a) $\frac{3 u^{2}}{g}$
(b) $\frac{4 u^{2}}{g}$
(c) $\frac{6 u^{2}}{g}$
(d) $\frac{9 u^{2}}{g}$
29. A balloon is rising vertically up with a velocity of $29 \mathrm{~ms}^{-1}$. A stone is dropped from it and it reaches ground in 10 seconds. The height of the balloon when the stone was dropped from it is ($\mathrm{g}=9.8 \mathrm{~ms}^{-2}$).
(a) 400 m
(b) 150 m
(c) 100 m
(d) 200 m
30. A particle is released from rest from a tower of height $3 h$. The ratio of the intervals of time to cover three equal heights h is
(a) $t_{1}: t_{2}: t_{3}=3: 2: 1$
(c) $t_{1}: t_{2}: t_{3}=1: \sqrt{2}: \sqrt{3}$
(b) $t_{1}: t_{2}: t_{3}=1:(\sqrt{2}-1):(\sqrt{3}-2)$
(d) $t_{1}: t_{2}: t_{3}=1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})$

CHEMISTRY

31.

 express which type of isomers
(a) Metamers
(b) Tautomers
(c) Functional isomers
(d) Chain isomers
32. The molecules which not exhibit metamerism are
(a) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ (ethers)
(b) $\mathrm{C}_{4} \mathrm{H}_{8}$ (Alkene)
(c) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ (ketone)
(d) $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}($ Amine $)$
33. Which molecule has higher enol contents
(a)

(c)

(b)

(d)

34. Give the E-Z designation of the following compound -

(a) Z
(b) E
(c) E-Z
(d) E-E
35. A Fischer projection of $(2 R, 3 S)-2,3$-butanediol is
(a)

(b)

(c)

(d)

36. How many delocalised π-electrons are there in the compound

(a) 8
(b) 2
(c) 4
(d) 6
37. Among the following, the least stable resonance structure is
(a)

(b)

(c)

(d) None of these
38. The correct stability order for the following species is

(I)

(II)

(III)

(IV)
(a) (II) $>$ (IV) $>$ (I) $>$ (III)
(b) (I) $>$ (II) $>$ (III) $>$ (IV)
(c) (II) $>$ (I) $>$ (IV) $>$ (III)
(d) (I) $>$ (III) $>$ (II) $>$ (IV)
39. Which comparison is not correct as indicated?
(a)

(b)

(c)

(d)

40. Which is maximum acidic?
(a)

(b)

(c)

(d)

41. The observed dipole moment of HCl molecule is 1.03 D . If $\mathrm{H}-\mathrm{Cl}$ bond distance is $1.275 \AA$ and electronic charge is 4.8×10^{-10} e.s.u. The $\%$ polarity in HCl will be
(a) $1.275 \times 1.03 \%$
(b) $\frac{4.8 \times 1.275 \times 10^{-8}}{1.03} \%$
(c) $\frac{1.03 \times 100}{4.8 \times 1.275} \%$
(d) $\frac{4.8 \times 10^{-10}}{1.03} \times 100 \%$
42. Which of the following has same bond order as NO^{+}has?
(a) CN^{-}
(b) $\mathrm{O}_{2}{ }^{-}$
(c) CN^{+}
(d) none of them
43. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}$ and NO_{2}^{+}, unpaired electron is present in
(a) $\mathrm{NO}_{2}^{+}, \mathrm{BaO}_{2}$
(b) KO_{2} and AlO_{2}^{-}
(c) KO_{2} only
(d) BaO_{2} only
44. Which of the following is planar?
(a) XeO_{4}
(b) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(c) $\mathrm{XeO}_{3} \mathrm{~F}_{2}$
(d) XeF_{4}
45. Which of the following does not contain coordinate bond?
(a) BH_{4}^{-}
(b) NH_{4}^{+}
(c) CO_{3}^{2-}
(d) $\mathrm{H}_{3} \mathrm{O}^{+}$
46. The correct order in which the $\mathrm{O}-\mathrm{O}$ bond length increases in the following is
(a) $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{O}_{2}$
(c) $\mathrm{O}_{3}<\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}$
(d) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
47. Which species has the maximum number of lone pair of electrons on the central atom?
(a) ClO_{3}^{-}
(b) XeF_{4}
(c) SF_{4}
(d) I_{3}^{-}
48. Molecular orbital electronic configuration for $\mathrm{X}_{2}^{\mathrm{n}-}$ anion is
$\mathrm{KK}^{*}(\sigma 2 \mathrm{~s})^{2}\left({ }^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{x}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{y}}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left({ }^{*} 2 \mathrm{p}_{x}\right)^{1}$
The anion $\mathrm{X}_{2}^{\mathrm{n}-}$ is
(a) N_{2}^{-}
(b) O_{2}^{-}
(c) N_{2}^{2-}
(d) O_{2}^{2-}
49. Among the following compounds, the one that is polar and has the central atom with $s p^{2}$ hybridization is
(a) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(b) SiF_{4}
(c) BF_{3}
(d) HClO_{2}
50. Which among the following species is most stable?
(a) He_{2}
(b) He_{2}^{+}
(c) He_{2}^{2+}
(d) H_{2}
51. Number of moles KMnO_{4} that is needed to react with one mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in acidic medium is
(a) $2 / 5$
(b) $3 / 5$
(c) $4 / 5$
(d) 1
52. 3 mol of a mixture of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ required 100 ml of $2 \mathrm{M} \mathrm{KMnO}_{4}$ solution in acidic medium. Hence the mole fraction of FeSO_{4} in the mixture is
(a) $1 / 3$
(b) $2 / 3$
(c) $2 / 5$
(d) $3 / 5$
53. How many ml of aqueous solution of KMnO_{4} containing 158 g litre ${ }^{-1}$ must be used for complete conversion of 83 g of KI to I_{2} in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(a) 90.36 ml
(b) 100 ml
(c) 85.09 ml
(d) 65.05 ml
54. The anion nitrate can be converted into ammonium ion. The equivalent weight of NO_{3}^{-}ion in this reaction would be
(a) 6.20
(b) 7.75
(c) 10.5
(d) 21.0
55. For the reaction,
$\mathrm{M}^{x+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MO}_{3}^{-}+\mathrm{Mn}^{+2}+\frac{1}{2} \mathrm{O}_{2}$ if one mole of MnO_{4}^{-}oxidizes 1.67 moles of M^{+x} to MO_{3}^{-}, then the value of x in the metal ion is
(a) 5
(b) 3
(c) 2
(d) 1
56. A 6.90 M solution of KOH in water has 30% of KOH by weight. The density of solution is
(a) $3.88 \mathrm{~g} / \mathrm{ml}$
(b) $13.88 \mathrm{~g} / \mathrm{ml}$
(c) $1.4 \mathrm{~g} / \mathrm{ml}$
(d) $1.288 \mathrm{~g} / \mathrm{ml}$
57. $28 \mathrm{~g} \mathrm{~N}_{2}$ and $6 \mathrm{~g} \mathrm{H}_{2}$ were mixed. At equilibrium $17 \mathrm{~g} \mathrm{NH}_{3}$ was formed. The weight of N_{2} and H_{2} at equilibrium are respectively.
(a) $11 \mathrm{~g}, 0 \mathrm{~g}$
(b) $1 \mathrm{~g}, 3 \mathrm{~g}$
(c) $11 \mathrm{~g}, 3 \mathrm{~g}$
(d) $14 \mathrm{~g}, 3 \mathrm{~g}$
58. 8.7 gm of pure MnO_{2} is heated with an excess of HCl and the gas evolved is passed into a solution of KI. The amount of I_{2} liberated is
(a) 0.2 mole
(b) 25.4 gm
(c) 15.4 gm
(d) 7.7 gm
59. A one litre solution of 0.1 M of a metal chloride $\mathrm{MCl}_{\mathrm{x}}$ requires 500 mL of $0.6 \mathrm{M} \mathrm{AgNO}_{3}$ solution for complete precipitation. The value of x is
(a) 1
(b) 2
(c) 4
(d) 3
60. Hydrochloric acid solutions A and B have concentrations 0.5 N and 0.1 N respectively. The volumes of solution A and solution B required to make a 2 litre solution of 0.2 N HCl are
(a) 0.5 L of A and 1.5 L of B
(b) 1.5 L of A and 0.5 L of B
(c) 1.0 L of A and 1.0 L of B
(d) 0.75 L of A and 1.25 L of B

MATHS

61. If $f(x)=4 x^{3}+3 x^{2}+3 x+4$, then $x^{3} f\left(\frac{1}{x}\right)$ is
(a) $f(-x)$
(b) $\frac{1}{f(x)}$
(c) $\left[f\left(\frac{1}{x}\right)\right]^{2}$
(d) $f(x)$
62. The domain of $f(x)=\sqrt{\log \frac{1}{|\sin x|}}$ is
(a) $R-\{2 n \pi, n \in I\}$
(b) $R-\{n \pi, n \in I\}$
(c) $R-\{-\pi, \pi\}$
(d) $(-\infty, \infty)$
63. The domain of $f(x)=\frac{\sqrt{-\log _{0.3}(x-1)}}{\sqrt{x^{2}+2 x+8}}$ is
(a) $(1,4)$
(b) $(-2,4)$
(c) $(2,4)$
(d) $[2, \infty)$
64. Let $f:(-1,1) \rightarrow I R$ be such that $f(\cos 4 \theta)=\frac{2}{2-\sec ^{2} \theta}$ for $\theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, then the value(s) of $f\left(\frac{1}{3}\right)$ is (are)
(a) $2+\sqrt{\frac{3}{2}}$
(b) $1+\sqrt{\frac{3}{2}}$
(c) $1-\sqrt{\frac{2}{3}}$
(d) $1+\sqrt{\frac{2}{3}}$
65. The range of $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}, x \in R$ is
(a) $(1, \infty)$
(b) $\left(1, \frac{11}{7}\right)$
(c) $\left(1, \frac{7}{3}\right]$
(d) $\left(1, \frac{7}{5}\right]$
66. The range of $f(x)=4^{x}+2^{x}+1$ is
(a) $(0, \infty)$
(b) $(1, \infty)$
(c) $(2, \infty)$
(d) $(3, \infty)$
67. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then $($ fofof $)(x)$ is equal to
(a) $\frac{3 x}{\sqrt{1+x^{2}}}$
(b) $\frac{x}{\sqrt{1+3 x^{2}}}$
(c) $\frac{3 x}{1-x^{2}}$
(d) None of these
68. The range of function $f(x)=x^{2}+\frac{1}{x^{2}+1}$ is
(a) $[1, \infty)$
(b) $[2, \infty)$
(c) $\left[\frac{3}{2}, \infty\right)$
(d) None of these
69. The domain of $f(x)=\frac{1}{\sqrt{[x]^{2}-[x]-6}}$ is
(a) $(-\infty,-2) \cup[4, \infty)$
(b) $(-\infty,-2] \cup[4, \infty)$
(c) $(-\infty,-2) \cup(4, \infty)$
(d) None of these
70. Let the function $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x$. Then, f is
(a) one-one and onto
(b) one-one and into
(c) many-one and onto
(d) many-one and into
71. The function $f:(-\infty,-1] \rightarrow\left(0, e^{5}\right]$ defined by $f(x)=e^{x^{3}-3 x+2}$ is
(a) one-one and onto
(b) one-one and into
(c) many one and into
(d) many one and onto
72. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
(a) $\frac{7 n}{2}$
(b) $\frac{7(n+1)}{2}$
(c) $7 n(n+1)$
(d) $\frac{7 n(n+1)}{2}$
73. If $y=f(x)$ satisfy the condition $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}(x \neq 0)$, then $f(x)$ is
(a) $-x^{2}+2$
(b) $-x^{2}-2$
(c) $x^{2}-2, x \in R-\{0\}$
(d) $x^{2}-2,|x| \in[2, \infty)$
74. The domain of $f(x)=\sqrt{x-x^{2}}+\sqrt{4+x}+\sqrt{4-x}$ is
(a) $[-4, \infty)$
(b) $[-4,4]$
(c) $[0,4]$
(d) $[0,1]$
75. The range of $f(x)=\log _{e} \sqrt{4-x^{2}}$ is
(a) $(0, \infty)$
(b) $(-\infty, \infty)$
(c) $\left(-\infty, \log _{e} 2\right]$
(d) $\left(\log _{e} 2, \infty\right)$
76. Let $f(x)=\frac{x^{2}-4}{x^{2}+4}$ for $|x|>2$, then the function $f:(-\infty,-2] \cup[2, \infty) \rightarrow(-1,1)$ is
(a) one-one into
(b) one-one onto
(c) many-one into
(d) many-one onto
77. If $x=111 \ldots 1$ (20 digits), $y=333 \ldots 3$ (10 digits) and $z=222 \ldots 2$ (10 digits), then $\frac{x-y^{2}}{z}$ equals
(a) $\frac{1}{2}$
(b) 1
(c) 2
(d) 4
78. If a, b, c are non-zero real numbers, then the minimum value of the expression $\frac{\left(a^{8}+4 a^{4}+1\right)\left(b^{4}+3 b^{2}+1\right)\left(c^{2}+2 c+2\right)}{a^{4} b^{2}}$ equals
(a) 12
(b) 24
(c) 30
(d) 60
79. If the sum of m consecutive odd integers is m^{4}, then the first integer is
(a) $m^{3}+m+1$
(b) $m^{3}+m-1$
(c) $m^{3}-m-1$
(d) $m^{3}-m+1$
80. If $2 \lambda, \lambda$ and $\left[\lambda^{2}-14\right], \lambda \in R-\{0\}$ and [•] denotes the greatest integer function are the first three terms of a GP in order, then the 51 th term of the sequence, $1,3 \lambda, 6 \lambda, 10 \lambda, \ldots$ is
(a) 5104
(b) 5304
(c) 5504
(d) 5704
81. Let $a_{1}, a_{2}, \ldots, a_{10}$ be in AP and $h_{1}, h_{2}, \ldots, h_{10}$ be in HP. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is
(a) 2
(b) 3
(c) 5
(d) 6
82. If $a(b-c) x^{2}+b(c-a) x y+c(a-b) y^{2}$ is a perfect square, the quantities a, b, c are in
(a) AP
(b) GP
(c) HP
(d) None of these
83. If 11 AM's are inserted between 28 and 10, the number of integral AM's is
(a) 5
(b) 6
(c) 7
(d) 8
84. The minimum value of the quantity $\frac{\left(a^{2}+3 a+1\right)\left(b^{2}+3 b+1\right)\left(c^{2}+3 c+1\right)}{a b c}$, where $a, b, c \in R^{+}$, is
(a) $\frac{11^{3}}{2^{3}}$
(b) 125
(c) 25
(d) 27
85. If a, b, c are in AP and $|a|,|b|,|c|<1$ and

$$
\begin{aligned}
& x=1+a+a^{2}+\ldots+\infty \\
& y=1+b+b^{2}+\ldots+\infty \\
& z=1+c+c^{2}+\ldots+\infty
\end{aligned}
$$

Then, x, y, z will be in
(a) AP
(b) GP
(c) HP
(d) None of these
86. Let $a_{1}, a_{2}, a_{3}, \ldots$. be terms are in AP, if $\frac{a_{1}+a_{2}+\ldots+a_{p}}{a_{1}+a_{2}+\ldots+a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals
(a) $\frac{41}{11}$
(b) $\frac{7}{2}$
(c) $\frac{2}{7}$
(d) $\frac{11}{41}$
87. If 100 times the 100 th term of an AP with non-zero common difference equals the 50 times its 50 th term, then the 150th term of this AP is
(a) 150 times its 50 th term
(b) 150
(c) zero
(d) -150
88. For any three positive real numbers a, b and $c, 9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$. Then
(a) a, b and c are in GP
(b) b, c and a are in GP
(c) b, c and a are in AP
(d) a, b and c are in AP
89. $\sum_{r=1}^{10} \frac{r}{1-3 r^{2}+r^{4}}=$
(a) $-\frac{50}{109}$
(b) $-\frac{54}{109}$
(c) $-\frac{55}{111}$
(d) $-\frac{55}{109}$
90. The sum of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots$. to infinite terms, is :
(a) $\frac{31}{12}$
(b) $\frac{41}{16}$
(c) $\frac{45}{16}$
(d) $\frac{35}{16}$

ANSWER KEY

PHYSICS									
1	2	3	4	5	6	7	8	9	10
B	A	A	C	B	C	D	A	A	A
11	12	13	14	15	16	17	18	19	20
A	A	C	D	A	C	B	C	B	C
21	22	23	24	25	26	27	28	29	30
B	B	D	C	B	A	C	B	D	D
CHEMISTRY									
31	32	33	34	35	36	37	38	39	40
A	B	B	B	A	D	A	D	B	A
41	42	43	44	45	46	47	48	49	50
C	A	C	D	C	A	D	A	A	D
51	52	53	54	55	56	57	58	59	60
B	A	B	B	C	D	D	B	D	A
MATHS									
61	62	63	64	65	66	67	68	69	70
D	B	D	B	C	B	B	A	A	A
71	72	73	74	75	76	77	78	79	80
B	D	D	D	C	C	B	C	D	B
81	82	83	84	85	86	87	88	89	90
D	C	A	B	C	D	C	C	D	D

